array= [7, 5, 9, 0, 3, 1, 6, 2, 4, 8]
for i in range(len(array)):
min_index = i # 가장 작은 원소의 인덱스
for j in range(i + 1, len(array)):
if array[min_index] > array[j]:
min_index = j
array[i], array[min_index] = array[min_index], array[i]
print(array)
선택 정렬의 시간 복잡도
선택 정렬은 기본 정렬 라이브러리를 포함해 뒤에서 다룰 알고리즘과 비교했을 때 매우 비효율적
다만, 특정한 리스트에서 가장 작은 데이터를 찾는 일이 코딩 테스트에서 잦으므로 선택 정렬 소스코드 형태에 익숙해질 필요가 있다.
삽입정렬
"데이터를 하나씩 확인하며, 각 데이터를 적절한 위치에 삽입하면 어떨까"
특정한 데이터를 적절한 위치에 '삽입'한다는 의미에서 삽입 정렬Insertion Sort이라고 부른다. 더불어 삽입 정렬은 특정한 데이터가 적절한 위치에 들어가기 이전에, 그 앞까지의 데이터는 이미 정렬되어 있다고 가정. 정렬되어 있는 데이터 리스트에서 적절한 위치를 찾은 뒤에, 그 위치에 삽입된다는 점이 특징.
# 퀵정렬 소스코드
array= [5, 7, 9, 0, 3, 1, 6, 2, 4, 8]
def quicksort(array, start, end):
if start >= end: # 원소가 1개인 경우 종료
return
pivot = start # 피벗은 첫 번째 원소
left = start + 1
right = end
while left <= right:
# 피벗보다 큰 데이터를 찾을 때까지 반복
while left <= end and array[left] <= array[pivot]:
left += 1
# 피벗보다 작은 데이터를 찾을 때까지 반복
while right > start and array[right] >= array[pivot]:
right -= 1
if left > right: # 엇갈렷다면 작은 데이터와 피벗을 교체
array[right], array[pivot] = array[pivot], array[right]
else: # 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체
array[left], array[right] = array[right], array[left]
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행
quicksort(array, start, right - 1)
quicksort(array, right + 1, end)
quicksort(array, 0, len(array) - 1)
print(array)
# 퀵정렬 소스코드
array= [5, 7, 9, 0, 3, 1, 6, 2, 4, 8]
def quick_sort(array):
# 리스트가 하나 이하의 원소만을 담고 있다면 종료
if len(array) <= 1:
return array
pivot = array[0] # 피벗은 첫 번째 원소
tail = array[1:] # 피벗을 제외한 리스트
left_side = [x for x in tail if x <= pivot] # 분할된 왼쪽 부분
right_side = [x for x in tail if x >= pivot] # 분할된 오른쪽 부분
# 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬을 수행하고, 전체 리스트를 반환
return quick_sort(left_side) + [pivot] + quick_sort(right_side)
print(quick_sort(array))
# 계수 정렬 소스코드
# 모든 원소의 값이 0보다 크거나 같다고 가정
array = [7, 5, 9, 0, 3, 1, 6, 2, 9, 1, 4, 8, 0, 5, 2]
# 모든 범위를 포함하는 리스트 선언(모든 값은 0으로 초기화)
count = [0] * (max(array) + 1)
for i in range(len(array)):
count[array[i]] += 1
for i in range(len(count)):
for j in range(count[i]):
print(i, end =' ')
계수 정렬의 공간 복잡도
데이터의 크기가 한정되어 있고, 데이터의 크기가 많이 중복되어 있을수록 유리하며 항상 사용할 수 없다.
계수 정렬의 공간 복잡도는 O(N+K)이다.
파이썬 정렬 라이브러리
sorted()는 퀵 정렬과 동작 방식이 비슷한 병합 정렬을 기반으로 만들어 졌는데, 병합 정렬은 일반적으로 퀵 정렬보다 느리지만 최악의 경우에도 시간 복잡도 O(NIogN)을 보장한다는 특징이 있음.